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Abstract

This work is devoted to the use of diffusion processes to study and estimate the corn pollen
dispersion. For this, assumptions on stopping time of stochastic processes are made and the dis-
tribution of subordinate process are computed to obtain different parametric dispersal functions.
In particular, an approximation of the distribution of the first-passage time at a level for an
Ornstein-Uhlenbeck integrated process is proposed. From experiments, parameters are estimated
using a non-linear regression model and a quasi-likelihood method. Finally the different models
are compared to choose the more adapted.
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1 Introduction

The aim of this paper is to use diffusion processes to study and estimate pollen dispersal. In fact,
during the last thirty years, the use of genetically modified plants increased in many domains such
as medicine, agriculture or environment. In opposition to improvements and possible economic
advantages due to GMO culture, arises the issue of possible risks on health and environment.
Hence it is important to study pollen dispersion in order to handle these risks. In the following we
study only the pollen dispersion in homogeneous landscape, i.e. when two fields are contiguous.
However the dispersion can also be studied on the level of an agricultural landscape (pollen
dispersion study over long distances).

To take into account the fact that corn dispersion is based only on wind, "mechanistic" models
are studied in the following, as Klein et al (2003), Tufto et al (1997). In these models, the pollen
grain is considered as a particle. This permits to model the corn pollen path while taking into
account major phenomena during dispersion : physical and biological corn pollen characteristics,
parameters linked to wind intensity and direction and field of forces (gravity in particular). To be
more precise, let (Xy,Y:, Z;) the position at time ¢ of a pollen grain and modeled using diffusion



processes. Introduce a stopping time 7" on the vertical component Z;, which corresponds at time
when the pollen grain fecundates a female flower. The aim is to compute the distribution of the
(X7, Yr) process, the obtained density function being called an individual dispersal function.

This paper is organized as follow. First in section 2, we describe the general framework : how pol-
len dispersion is modeled using two functions, the backward dispersal function and the individual
dispersal function and the relation between them.

Section 3 and 4 describe studied models for corn pollen grain path using diffusion processes.
In Section 3 preliminary results are given, in particular the relation existing between this path
and the associated individual dispersal function. A summary of proposed models by Klein et
al (2003) are also described, based on Brownian motion with drift, which permits to take into
account mean wind intensity.

In section 4, we model more precisely the vertical component via its velocity instead of its
position. Hence (Z;) is an integrated Ornstein-Uhlenbeck process. And this leads to study for
this process the distribution of the first-passage time at a level for the stopping time T'. As there
is no known explicit analytic expression for the density function, we propose an approximation.
For this we make a time change leading to approximate the first passage density of a standart
Brownian motion throught a curved boundary and we apply a theorem due to Durbin (1992).
Then a new individual dispersal function is obtained.

In section 5, the proposed statistical model is described and a quasi-likelihood method is used to
estimate parameters of different proposed parametric individual dispersal functions from observed
data. The results are given and compared to choose the most fitted model, using a criterion of
Akaike type and graphic methods. Finally a discussion is made in Section 6. Moreover parameters
of proposed models can be linked to meteorological data, corn biological and physical parameters.
Then these models have the advantage to allow predictions. Hence the estimated parameters
values are compared with available physical data, obtained independently of observed data.

2 Modeling the pollen dispersal and pollination

Two pollen sources are used. One contains homozygous plants having a dominant genetic marker
coloring the corn grains in blue. The other source contains common homozygous corn plants not
genetically marked. The plants from the second source are used as receptors, and each of those
offspring plant being genetically marked results from a fecundation by a corn seed from the first
source. Therefore, the number of blue-marked grains in an ear reflects exactly the pollination
intensity by the first source upon the second source.

Two functions can be defined to describe pollen dispersal.

The first one is linked to phenomena occurring at the pollen source and is called the forward
approach. The effective individual dispersal function 7(z, y)dzdy describes the probability that a
pollen grain emitted at point (0, 0) falls and fertilizes a plant located in ((x,y), (z + dz,y + dy)).
It is a two-dimensional probability density function.

The second function is the backward dispersal function, u(z,y). It represents the probability that
a corn grain located at point (x,y) is pollinated by the marked source.

This function is the most intuitive and the most used by biological people. As a fact pollen
is overabundant. This implies that pollination occurs according to the pollen cloud composition
above a plant (This takes into account the competition between pollen grains in the pollen cloud).

The framework in this document is :



(A1) Pollen is dispersed following the same individual dispersal function ~ for each plant and the
same quantity of pollen is produced by all plants, whatever their genotype.

(A2) There is no intrinsic genetic differences between both plants (viability, germination rate,
fertilization effectiveness).

Assumption (A1) doesn’t take into account pollination at the field boundaries where there is a
border effect. This is justified in some sense because the fields under study are large.

Under these assumptions, there exists a relation between the backward and the individual dis-
persal function. This approach was used by Tufto et al (1997) and Klein et al (2003).

Let us consider the pollen cloud composition above a plant located at (x, y). Two different sources
of pollen are in competition : a source S4 of blue marked plants at points (2, yx)k=1,...5, and a
source Sp of yellow plants at points (3:;6, y;c) k=1,..,55- Then the pollen cloud composition above
a plant located at (z,y), leading to u(x,y) can be written :

S (@ = xy — i) 1)

,u'(xhy) = S S 4 !
Zki1 V(@ — 2k, y — yi) + Zk£1 y(w — Ty, Y — yk)

Here we investigate pollen dispersal for corn with colored or non colored grains. Hence Assump-
tion (A2) is satisfied. In the case where there is a difference between the two types of plants, a
parameter m ruling the effect can be introduced in (1).

The number of blue grains on an ear located at point (x,y) represents the noisy observation of
the backward function u(x,y). Clearly u(.,.) is linked to the experiment design (shape, size for
example) contrary to the individual dispersal function . Hence we focus on estimating 7, which
is not directly observable, from observations of u. As it is a non-linear deconvolution problem,
in the following, only parametric individual dispersal functions are proposed i.e. {v(0;xz,y),0 €
O and (z,y) € R?} where O is a subset of RP (p > 1).

3 Parametric models for pollen dispersal and pollination

There exist mainly two ways for modeling individual dispersal functions. The first one, called
"empirical method", is to consider isotropic, exponential, or decreasing power type functions, or
a compromise (Nurminiemi et al (1998), for rapeseed Klein, 2000). Since, for corn, dispersion is
only based on wind, these models are not adapted. This leads to use more informative models,
able to take into account for instance a wind dominant direction. Pollen grains are considered
as particles and their path is modeled using diffusion processes and obtained models are called
"mechanistic" models.

Different assumptions for stopping time of these processes are made. This leads to computation
of distribution of subordinate process which permits to obtain individual dispersion functions.

3.1 Notations and preliminary results

Let P, = (Xt,Y:, Z¢) be the position of a pollen grain at time ¢, Py = (0,0,0), and T the
pollination time which represents the time when the pollen grain path stops and fecundates a
female flower at height h, with A negative.

Assuming that

(A3) T is a positive random variable a.s. finite with density f on RT*.

(A4) The process (Xy,Y;) admits a density gi(z,y) for all t > 0 on R



Property 1 Assume (A3) and (A4). Then, if T and (X:,Y;) are independent, the process
(X7,Y7) has a density on R? given by

+00
() = /0 ge(, ) f(t)dt (2)

Proof : Let ¢ a positive measurable function. According to Bayes formula and the fact that T
and (X;,Y;) are independent random variables, we have :

Blo(xr.vn) = [ /( . /t O y)gr (@, ylT = )£ (¢) dt da dy
z,y

-/ /M)GRQ ote.0) { [ atens it} dsdy

Hence the result is obtained.
In the following, we assume that this holds. Therefore v is the density function that we are
looking for.

Let us recall definitions of two probability distribution used in the following :

Definition 1 The Generalized Inverse Gaussian (GIG) is the distribution on R™ of a random
variable having the density function with parameters («, p,n) and p > 0,1 > 0 given by

1 n
1) = ————t e P
fGIG(a7p777’ ) I(a,pﬂ?) € t >0

Definition 2 (see Barndorff-Nielsen, 1997 for example) The Generalized Hyperbolic Distribution
(GHD) is the distribution on R? of a random variable having the density function with parameter
0 = (8, A\zy Ay, Az, @) being in © = RT x (R)? x RT x R.

)\i_o‘52(p/q(:13, y))% ’Ca( pq(x, y)) e&(Azx—l—)\yy)
27 Ki—a(A2)

fGHD(av)‘Zv)‘xv)\y)é;wvy) = (3)

with p = A2 + \2 + )\Z, q(z,y) = 1+ 6*(z® +y?).
Remark : the function K, is the modified Bessel function of third kind (for a detailed definition
see for example Abramovitz and Stegun 1972).

3.2 Summary of previous results

Let us briefly recall some results obtained in Klein et al (2003).

3.2.1 Modeling the path

In this section, the pollen grain path is modeled by a Brownian motion with drift on R3. This
permits to take into account in particular mean wind intensity and atmospheric turbulence due
to wind. So the path (P;) can be written :

dX; = f.dt + 7dB}
dY; = f,dt + 7dB} (4)
dZ; = f.dt + 1.dB}



with 7,7, are positive, f, is assumed negative, and (B});=1,2,3 are three independent Brownian
motions.

The parameters f, and f, represent the wind mean velocity and the parameter f. represents the
velocity of the pollen grain resulting from gravity. The variance parameters of these stochastic
processes represent atmospheric turbulences.

Clearly (A4) is satisfied since, in this case, (X;,Y;) has

2
a normal distribution with mean (f,t, f,t) and covariance matrix (Tot 7_(2] t> (5)
Klein et al (2003) proposed three models for pollination time which will be used in the following
for estimation. Various models are considered for the pollination time 7T'.

Model 1 : Exponential hitting time Vegetation is the main factor that stops pollen grains. Tufto
et al (1997) introduced a random variable T, having an exponential distribution with parameter
A (positive) independent of the path. Moreover fecundation occurs only when a pollen grain hits
a female flower. Hence the pollination time TF is defined as the distribution of the stopping time

T. conditionally to the event {Z7, = h}. Then T is a.s finite and is a GIG with parameters 3
f2 h2
A+ 222 and 27

z

(Klein et al 2003)

Model 2 : First hitting time of a level Here the pollen grain path stops when it hits the female

flower height. Hence the pollination time is the first-passage time at the height h and Tp =T}, =
2
4

322

inf{t > 0,Z; = h}. As f. is negative, T}, is a.s finite and is a GIG with parameters and
h2

5
272

(see for example Karatzas and Shreve, 1991)

Model 3 : Generalization The pollination time is a GIG(«, p,n7) where the o parameter is unspe-
cified. It includes both previous models and permits to take into account the vegetation influence
on the pollination time.

3.2.2 Individual dispersal functions

Computing v(z, y) using Property (1) leads to explicit formulae for individual dispersal functions
expression in the three cases since we obtain GHD distribution

Let 6§ = — 2 )\ _M7 )\y:M7 )\Z:fzh

T|h|” 7t T, TT, 7'—3’

1

22 = (2AR% + )\E)ﬁ

(6)

For Model 1, Ky/3(s) = \/gs_l/ 2675 and ~ has a simplified expression and is called GTM
(Generalized Tufto Model) :
525\265\z e_ pQ(x7y)

2 q(z,y)

fGTM(S\zy)\;C,)\y,é;]I,y) = eé(}\zr—i-)\yy)
For Model 2, IC3/5(s) = \/?5_1/26_8(1 +571) and v is a NIG (Normal Inverse Gaussian) with
shape

52e>\z (q(x,y)_1/2 —|—p1/2)
2m q(z,y)

INTGOas Ay Ay, 8322, y) = e VPi(EY) SRz tryy) (7)



Model 3 is a GHD with parameters (J, A, Ay, Az, @) defined in (6).

We can stress that the anisotropy appears in the exponentiel term, edA=*+2¥) for the three
models.

These models have been estimated on data. There was an inadequacy between the parameters
estimated and the physical ones that coud be observed (see Section 6 and Table (4) for more
precisions). This is a drawback for applications since it is impossible to make predictions in other
situations. This is why we consider here a new model.

4 New parametric model : modeling (Z;) via its velocity

From a physical point of view, previous models are only based on path components of the pollen
grain. However, from a biological point of view in many cases, velocity is quite important to
model the pollen grain path. We develop this approach in this section, a pollen grain being still
seen as a particle.

The vertical component (Z;) is modeled via its velocity using Ornstein-Uhlenbeck process, hence
(Zy) is an integrated Ornstein-Uhlenbeck process. We propose to study an approximation of the
density function of the first passage time at level h for this process. For this we make a time
change leading to approximate the first passage density of a standart Brownian motion throught
a curved boundary and we apply a theorem due to Durbin (1992).Finally a new individual
dispersion function is computed.

Recall that P, = (X;,Y;, Z;) is the position of a pollen grain at time ¢ in R? and Py = (0,0,0).
And the pollination time will be taken as in case 2 :

T=v=inf{t >0,Z; = h}.

In this new model, called Model 4, the process (X;, Y;) representing components in the horizontal
plane is still assumed to be a two-dimensional Brownian motion with drift. Hence the marginal
distribution of (X;,Y;) is still given by equation (5).

But the vertical component (Z;) is modeled more precisely using the Langevin equation. It
permits to introduce the fact that the pollen grain is subject to a force resulting from gravity
but also from a wind force. This consists in modeling the velocity as following with an Ornstein-
Uhlenbeck process :

av, = (dz - ﬁ‘/;f)dt + 1.dB¢,v9 =0

t
th/vsds,z():o (8)
0

assuming that 7, is positive, 3 > 0 and d, < 0.

d, is a force resulting from gravity and n,dB; represents the contributions of the force applied by
the wind on the particle during its trajectory whose are not already in the friction term —3V;.
The process Z; is called an integrated Ornstein-Uhlenbeck process.

Lemma 1 Assuming that (3 is positive, d, is negative and vog = 0, Z; satisfies

o d. d; (]- — e_ﬂt) Nz ! —B(t—s)
Zt_ﬁt_ﬁT—i_ﬁ O(l—e )dBS (9)
Cd., d.(1—eP 2 4e=Pt — 3 — 720t
Hence E(Z;) = ﬁt Sl A and Var(Zy) = (t + 57 >



Proof : First, for # > 0, applying It6’s formula to the process S; = exp(ft)V;, one obtains

d d t
V, = 2 — 2Bt Ze—ﬁt/ eﬂSst
T8 B G

The use of the Fubini theorem for stochastic integrals (Protter, 1992) leads to :

t S

—t —1—/ {<—%> e P 4 nze_ﬁs/ eﬁ“dBu} ds
0 B 0

d,

_ d, (1— e_ﬁt) UE t —B(t—u)
R i e ¥ A Gt L

d

Zt:ﬁz

From above, we deduce directly the expectation of Z;.
For the variance, we have

772 t 2 7]2 t

Var(Z;) = d_;/ (1 _ e—ﬁ(t—s)) ds — d_; (1 1 e2B(t-s) _ 2e—fﬁ(t_s)) ds
z JO s Jo

Hence we obtain Lemma 1.

Let us stress that as ¢t tends to +o0, one has

2

d, o
B(Z) ~ 5t and Var(Z) NZ_E (10)
Let us now define vy, =inf{t > 0,Z; > h} where Z; is defined in (8). (11)

Lemma 2 Assuming that d, <0, 3> 0 and h <0, the stopping time
vy, defined in (11) is almost surely finite.

Proof : We have

P(vp =+00) = P(¥,Z; > h) =P( lim ({Z. > h})
u<t

o P
lim P(({Zu > h}) < Jim P(Z > h)

t—+o00
u<t

Using the approximation of E(Z;) in (10), we have h — E(Z;) > 0 when ¢ tends to infinity.
Applying the Bienayme-Tchebytchev inequality, then we obtain

P(Z; > h) = P(Z — B(Z) > h— BE(Z)) < %

Still according to approximation in (10), we obtain lim;_, o P(Z; > h) = 0 and the result.

The distribution of v is the density of the first passage time of level h for an integrated Ornstein-
Uhlenbeck process, which is different from previous models. Although the computation of the
density of this kind of process has been studied for several years there is no known explicit analytic
expression. We study here an approximation of the v density function, using an approximation
of the first passage density of a Brownian motion through a curved boundary (Durbin, 1992).



We need to define the quantities

—d, —B3%2h
b, = , Cp = b with b, >0 and ¢, > 0. (12)
n:vB Mz
And the auxiliary functions
Ht)=1—et—t, gt)=t—1.5+2e"—0.5e 2, Ag(t) =b,H(t) +c.. (13)

Note that ,
H(t) ~ —% at the neighborhood of 0 and H(t) ~ 1 — ¢ at the neighborhood of +oco.
g(t) ~ —£t3 at the neighborhood of 0 and g(t) ~ t — 3 at the neighborhood of +ooc.

Theorem 1 Assume that (Z;) is the process defined in (9).Then the density of vy, defined in
(11), can be approrimated by

BB [AB)  AGD), (A
p(t) = \/ng(ﬁt)[ ] p< 29(575)) (14

g(Bt) By (Bt)
Proof : First, a time change leads to approximate the first passage density of a Brownian motion
crossing a curved boundary, depending of time.
Indeed v,,(Z) satisfies
vn(Z) = vp(Y) = inf{t > 0,Y; < fo(t)} where ¥; = /t (1 - 6—5“—5)) dB, and
ph d.  d. '

folt) = 22— Gy G2 (1 by,
o(t) PRl Uzﬁ( )
Define now the process Y; = / t (1 - e_(t_“)) dB,. Then Y; 2 i?ﬁt- Therefore
0 VB
. ~ 1. ~ 1_ .-
vp(Y) 2 inf{t>0,Ys < /Bfo(t)} = Bmf{u >0,Y, <—-Ap(u)} = EV(Y) (15)

with Ay defined in (13).

The process (f’t) is a continuous local martingale as the result of an It6 integral, with Yy = 0.
Hence its associated increasing process is

et -3 — 2
2

- t 2
gt) =<Y >= / (1 - e_(t_s)) ds =t+
0

Clearly . liin <Y >; = +00 and the function g is an increasing convex bijection from [0, 4+00)
—400

to [0, +00).

Define now T'(s) = inf{t > 0,< Y >; > s}. Clearly

T(s) = inf{t > 0,g(t) > s} =g (). (16)

A time change theorem (for example Rogers and Williams (1994), p 64) gives

Y = Yg-1(5)

B, (17)

19



where B, is a Standard Brownian motion. Then using (15) and (17)
. - _ D . - _ _
inf{s>0,Yp < —Ag(g™ (5))} = inf{s > 0,Bs < —Ag(g~"(5))} = g(#(Y))

hence 7(Y) 2 g ! (z’nf{s >0,B, < —Ag(g‘l(s))}).
Using the following property of Brownian motion B; £ — B, and noting
ag(s) = Ap(g~1(s)), we deduce that

D

vp(Y) gt <z’nf{s >0,Bs > ag(s)}> (18)

I R

Now we approximate the density of the stopping time inf{s > 0,B, > ag(s)} by a density
function noted ry(t).

The defined function ag is C! on the interval (0, +0c0) with ag(0) = ¢, > 0 (because h < 0,d, < 0
and 3 > 0). Moreover, a is concave (because g is convex).

Applying an approximation theorem for the first passage density of a Brownian motion crossing
a curved boundary (Durbin, 1992), we obtain a density function

o(t) = = (4~ 1)) exo (—%“2)

Therefore we deduce an approximated density p(t) for the density function of v}, using (18).
Remark : We have —b.t +c, < ap(t) < —b,t+ (b, +c.) for all t > 0 (where ag(t) = Ag(g71(1))).
In fact clearly we have —t < H(t) < 1 —t. An easy study of the function ¢ — g~1(¢) — ¢ leads
to g~1(t) >t for t > 0. In the same way we obtain H(g~'(t)) > —t for t > 0. Hence we deduce
that —t < H(g~*(t)) <1 —t and the result.

Hence we can compute an individual dispersal function :

Property 2 If the density function of the pollination time T = vy, is approzimated by the func-
tion pg_(t) defined in (14) where 0, = (b, c.), then the distribution of (X,,Y,) admits the follo-
wing density :

2

A
’Y(& €, y) = ? exXp (2)‘(sz + Tyy))

/+oo % exp <—(r?g )t — w> pez(%)dt (19)
0

2 2
2 Iz 2 Jy 2 p 2 +\3
= eR RT)°.
- 27_26,% 525 A 5.2 and 0 x (RT)

wzth 0 - (rx,rya )\7 bZ)CZ)J r

Proof : The joint distribution of (Xy,Y?) is given in (5).

Moreover according to Theorem 1, the v density function is approximated by pyg, (). And since
(By) is independent of (B}, B?), it is clear that (X;,Y;) is independent of v, (which only depends
of the vertical component (Z;)).

Therefore applying the formula (2), (X,,Y;) has a density on R? with

+oo
() = /0 9u(2, 9)p5, (u)du



The variable change ¢t = fu gives the result.

After modeling different parametric individual dispersal functions, it is necessary to estimate
parameters and then to compare the results in order to choose the model that fits best the
observed data.

5 Statistical analysis

5.1 Statistical method
Consider an ear located at (z,yx). It possesses
ny grains, assumed constant and Ny observed blue grains (20)

Since observations are counting data, the first approach is to assume that the random variables
Ny, are binomials with parameters (ng, u(0;xg, yx)) (as in Klein et al, 2003). However it is not
necessary realistic for biological and environmental reasons. In fact, the experimental conditions
may vary during the experiment (variation of wind speed or of the period of ovules fertility
for example). As a result the grains genotypes on a same plant are in fact correlated. Hence a
dispersion parameter is introduced as in Collett (1991) and this has led us to consider a more
general statistical model :

Ny, = nupu(6; 1, yx) + ex withE(ey,) = 0 and Var(eg) = o?ngw(0, b; (xx, yx)) (21)
where the (g;); are assumed independent, o2 > 0 and v(.,.) is a real function.

Choice of the variance function v :
First we take a binomial type variance function :

v1(0; Tk, yk)) = (0 2k, yi) (1 — 105 2k, yx))-
In a second time a linear type variance function is proposed :
vo(0, a; (zx,yr))) = (a + p(0; 2k, yx)) for pe€[0,0.5] and a € RT.

Indeed looking more precisely at experimental data shows that most of the observed values for
1 are located between 0 and 0.2. It is therefore more accurate to model the variance function on
this interval, rather than on the whole interval [0, 1]. Moreover, with quasi-likelihood method, it
seems appropriate to use a variance function being not equal to 0 at 0. Indeed, it is necessary to
put weight where blue grains are observed. With the binomial type variance function too much
weight is put on small values of pu, leading to “attribute” more importance to data where there
is almost no observations rather than the opposite.

The aim is to estimate the parameters vector (6,b) where 0 is the parameters vector in the
different families of individual dispersion functions {v(0;x,%),0 € © and (z,y) € R?} and b is
the parameter present only in the variance function (cf 21).

For this, a quasi-likelihood method is used (Wedderburn 1974, Huet et al 1996).

We note g(0,b, n¢; 2, yi) = 02n0(0, b; (2, yi))-

Assuming that n is the number of observations, let p denote the dimension of the parameter
vector f and that parameter b is one dimensional, then quasi-likelihood equations are given by,
fori=1,...,p:

Nk — nypa(6; g, yr)

"0
Ui(0,0) => 8_5-(9; Tk, Yi)
k=1 "

10



and

=)

(Nk - ntﬂ(97 Ty yk))2 - g(67 b? g (xlw yk))
g2(0,b,1; (k, yr))

Upsr(0,0) =Y =
ob
k=1
The quasi-likelihood estimator of (6,b) , noted (6,b), is then defined by U;(0,b) = 0 for all
i=1,...,pand Upy1(6,b) = 0.

(0,0,m; (2k, Yx)) (22)

Parameter o2 is estimated using the residual variance :
n . 2
n i=1 9(67[), nt7($k7yk))

Property 3 (i) The quasi-likelihood estimator (é, l;) is asymptotically consistent and converges
in distribution at rate \/n to a centered Gaussian distribution.

(ii) Parameter o is also asymptotically consistent and converges in distribution to a x*(n — p),
where n is the data number and p dimension of the parameter vector 6.

Proof : For (i), see for example Huet et al (1996) and for (ii) Collett (1991).

5.2 Data description

Two experiments are at our disposal. The principle is the same one for both thus we detail for
the first experiment.

Experiment 1 : The experimental data result from an experiment on a corn field performed during
summer 1998 near Montargis (France) by AGPM.

The corn field from the experiment is a square of length approximately 120 meters (the upper left
corner is cropped by a road, therefore there is no culture in that corner). It has been cultivated
according to the following model : 155 lines spaced of 0.8 m, and on each line 800 plants are sown,
spaced of 0.15 m. In the middle of this field a square of length 20 meters of plants producing blue
grains has been sown. Elsewhere yellow corn has been sown. 2937 ears have been sampled. In
fact to be more accurate 101 lines were sampled (1 line every 3 lines, and every line at proximity
of the blue corn square). On each line 31 ears were taken, so about one every 4 meters. Then,
on each ear, the number of blue grains has been counted. The total number of grains on an ear
was considered constant, equal to n; = 394 (estimated by counting the total number of grains
on sampled ears chosen randomly in the field). Figure 1 gives the representation of blue grains
observed proportions on each sampled ear. We can see that dispersal is non isotropic as assuming
before.

Moreover some meteorological data are available. It permits to compare them with some esti-
mated physical parameters that can be extracted from the proposed models, also for validation
purpose (see Section 6).

Experiment 2 : It is a similar experiment done during summer 1998 near Messanges (France).
The field measure 131 x 125 m with 177 rows 0.75 apart each containig 800 plants 0.15 m apart.
In the middle of this field a square of length 20 meters of plants producing blue grains has been
sown. Elsewhere yellow corn has been sown. 1771 ears have been sampled and the mean total
number of gains on an ear was estimated to n; = 154.

11



5.3 Results

First, we present a detailed analysis for experiment 1 :
The results obtained for Model 2, Model 3 and Model 4, are done here. In Model 2 and 3, the path
is modeled using three Brownian motion with drift. For Model 2, T' is the first hitting time of level
h and has for density a GIG with parameter « equal to 3/2. The individual dispersal function is
given in equation (7). For Model 3, T' is a GIG with parameter « free and the individual dispersal
function is given in equation (3). In Model 4, the (X;,Y};) path is still modeled using two Brownian
motion with drift. However the vertical component velocity is modeled by an Ornstein-Uhlenbeck
process and T is the first hitting time of level h for an integrated Ornstein-Uhlenbeck process.
The individual dispersal function is given in equation (19).
The results of parameters estimations are given in the Tables (1), (2) and (3) for Model 2, 3 and
4 respectively. Parameters estimations for Model 1 have been done but do not provide results so
are not presented here. According to the variance function that is used in (21), we present the
estimations variance function type parameters estimations and associated standard errors are
computed.
Remark : For Model 4, a continuous expression has been used to compute the backward function
i in equation (1), the discrete sum being replaced by an integral (the plants density being high
enough). Moreover because of numerical issues, in the density function pg_ defined in (14), the
functions H(u) and H,/(u)
g9(u) g'(u)
Theorem 4.1).

have been approximated by —1 (due to the remark at the end of

The study of the standard errors for different models shows that they are smaller with the linear
type variance than the binomial type variance.

The figure (2) represents the individual dispersal function (in R?) for the NIG model and for the
linear type variance. The figure (3) represents the curves of the individual dispersal functions
following the wind axis (a) and in the wind orthogonal direction (b), for models 2 to 4 and for
the linear type variance.

It can be noticed that these functions are not isotropic as suggested by the corn dispersion type.

Let the dispersion parameter 02 = (1 + d(n; — 1)). In our case the parameter d stands for the
correlation between the genotypes of two sampled descendants on a same ear (Collett 1991).
According to obtained values for 02, we are in case of overdispersion (d > 0) (with Var(e) >
nw(0,b; (zk,yr))). Hence the variables Ny, are positively correlated, i.e. there is greater variation
in the numbers of successes (blue grains) that would be expected if they were independent.

The aim is now to choose the most fitted model according to the experiment data.

First a selection criterion of Akaike type (Hurvich and Tsai, 1995) can be used. It is defined by
AICc =log(o?)+1+ 2(pn—+1) where p is the parameter dimension and n the number of observations.
The AICc values are given in Tables (1), (2) and (3). This test leads to select the NIG model
with a linear type variance, although the AICc value of other models are almost similar (for the
linear type variance). Moreover, the computing time for model 3 is much longer than for model

2, due to its function form.

For the linear type variance, the estimated value of « for the third model (GHD) is 1.41. As a
reminder first model (GTM) and second model (NIG) are both particular cases of the third model
(GHD) with parameter « equal to 1/2 and 3/2 respectively. A quasi-likelihood ratio test (in the
case of a heteroscedastic non linear model, Huet et al (1996)) can be done on the parameter « :
the null hypothesis Hy "o = 3/2" against the alternative H; "o # 3/2". The Hj hypothesis is
accepted at asymptotic 5% level (the obtained value of the test statistic is equal to 2.26).
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The study of standardized residuals permits also to select the most fitted model. However, here
there is a visible structure due to the nature of the data (in particulary because of a dispersion
based on a dominant wind direction). The graphics of positive standardized residuals on the field
are given in Figure (4). The middle square of blue grains corn is represented in white. On the
graph of positive values, negative values are in white.

The residuals graphics with the binomial type variance function (column (a)) show that the
majority of residuals lie between -1 and 1 for all models.

For the linear type variance function (column (a)), generally graphics are better than for the
binomial type variance. For the fourth model, strong residuals on the right border of the field
appear.

Hence, this graphical interpretation confirm the choice to select the model 2, NIG, with a linear
type variance function.

For experiment 2, we present results obtained for model 2, NIG, where the path is modeled
using three Brownian motion with drift, and the model 4, in witch the (X;,Y;) component is a
Brownian motion with drift and the vertical component (Z;) is an integrated Ornstein-Uhlenbeck
process (see equation (19)). In both cases, T' is the first hitting time of level h. The results of
parameters estimations are given in the Tables (5) and (6) for model 2 and 4 respectively.

The study of the standard errors for different models also shows that they are smaller with the
linear type variance than with the binomial type variance.

The figure (5) represents the curves of the individual dispersal functions following the wind axis
(a) and in the wind orthogonal direction (b), for the two models and for the linear type variance.
Near the pollen source, the two curves are similar and after the model 4 curve is above the model
2 curve.

The selection criterion of Akaike type and the study of standardized residuals confirm the choice
of a linear type variance for statistical analysis. Moreover the AICc values are close for models 2
and 4, slightly smaller for model 4.

6 Discussion

For experiment 1, the estimated parameters can be compared to biological parameters (female
flower height h, settling velocity f,) and physical parameters based on meteorological data (wind
mean intensity and direction f;, fy, turbulence parameters 7,7.) used in the description of dif-
ferent models. Those data were obtained independently of observed data. This is also interesting
in order to choose the most realistic model. The results are in Table (4).

We find again that the most satisfying results are found using the model 2, NIG, with a linear
type variance : f,, f, and 7, are estimated in a satisfactory way, but 7 is over estimated. Moreover
these results are correct contrary to those of Klein et al (2003) who used a binomial variance
without a dispersion parameter. (They had to multiply per two the meteorological data to obtain
correct results.)

Hence this study consolidates the choice of the NIG individual dispersal function with a linear
type variance.

To conclude, in these models the existing relations between physical parameters and models
parameters permit to make prediction. This is interesting because for a given field and a given
wind, it is possible to compute a pollination rate.
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For the two studied experiments, we can suggest that model 2, NIG, is the most suitable to
model the corn pollen dispersion in an homogeneous environment. In fact the proposed model,
based on a more precise modeling of the vertical component, gives slightly less good results in
the case of the experiment 1 and similary results for experiment 2. We can think that it is due
to the two approximations done : the first to obtain a tractable expression for the fecundation
time density and the second to have the numerical convergence of the statistical criterion.
From a statistical point of view, the linear type variance function that we proposed gives better
results for parameters estimation.

The next step regarding this work is to try to apply these results to the heterogeneous environ-
ment, i.e. when two corn fields are separated by another culture or a nude ground.
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TAB. 1 — Parameters estimations for Model 2, NIG defined in (7) with o = 3/2, for experiment

1.

TAB. 2 — Parameters estimations for Model 3, GHD, defined in (3) with « free, for experiment

1.

TAB. 3 — Parameters estimations for Model 4 defined in (19), modeling (Z;) via its velocity, for

experiment 1.

Binomial variance Linear variance ‘
Parameters Estimation  Std error Estimation Std error
0 0.5176 0.0837 0.5177 0.0225
Az - 0.0056  0.0509 -0.0096 0.0065
Ay 0.1808 0.0244 0.1914 0.0143
Az 0.0561 0.0835 0.0669 0.0204
a - - 1.175107° 3.589 107
o’ 145.9 9.261
[138.7; 156.7] 8.801; 9.755]
AlCc 5.986 3.2299

Binomial variance Linear variance
Parameters Estimation  Standard error Estimation Standard error
0 0.5985 0.2334 0.5850 0.0571
Az -0.0046 0.0217 -0.0082 0.0057
Ay 0.1555 0.0746 0.1683 0.0205
Az 0.0799 0.0573 0.0853 0.0151
o 1.3986 0.1804 1.4133 0.0461
a - - 1.166 107>  3.534 10~
o? 155.6 9.263
[147.9; 163.8] [8.808; 9.752]
AlCc 6.051 3.2308

Binomial variance Linear variance
Parameters Estimation  Standard error Estimation Standard error
Ty -0.1822 0.3221 -0.1903 0.1010
Ty 1.4359 0.4796 1.3340 0.1620
A 0.1571 0.0179 0.1820 0.0078
b, 0.4683 0.0532 0.4417 0.0163
Cy 0.1208 0.0647 0.1299 0.0216
a - - 8.948 107 4.803 1078
o? 153.6 18.81
[ 146.03; 161.76] [17.88;19.82 |
AlCe 6.0384 3.9391
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NIG NIG NIG
Parameters Min Mean Max Klein et al. Binomial Var Linear Var

Vertical Drift, f, (m.s~1) 0.183

Height difference, h (m) 0.831
Horizontal drift : f, (m.s™!) -0.056 -0.074 -0.042 -0.061
fy (m.s™1) 0.998 1.74 1.37 1.22
Vertical variance, 7, (m.s™1) || 0.35 1.175 2 2.37 1.65 1.51
Horizontal variances , 0.65 1.325 2 5.70 3.83 3.51

e =Ty (M.s™1)

TAB. 4 — Comparison of estimated parameters with biological and physical parameters, for ex-
periment 1.

Binomial variance Linear variance
Parameters Estimation  Std error Estimation Std error
) 1.0420 0.0631 1.0303 0.0286
Az 0.0742  0.01648 0.0848 0.0082
Ay 0.0377 0.0118 0.0417 0.0057
Az 0.0011 0.0006 0.0008 0.0001
a - - 1.090 107 4.600107
o’ 8.678 1.719
[ 8.134;9.279 | [1.611;1.838 |
AlCc 3.1664 1.5487

TAB. 5 — Parameters estimations for Model 2, NIG defined in (7) with o = 3/2, for experiment
2.

Binomial variance Linear variance
Parameters Estimation  Standard error Estimation Standard error
Ty 2.1444 0.5837 2.1743 0.2682
Ty 1.0557 0.37294 1.1053 0.1667
A 0.1340 0.0128 0.1377 0.0061
b, 0.0121 0.0042 0.0198 0.0016
Cs 0.1732 0.0017 0.1741 0.0008
a - - 1.13610~°  4.768 10~ 7
o? 8.102 1.613
[ 7.594;8.663 | [1.511;1.724]
AlCe 3.0989 1.4858

TAB. 6 — Parameters estimations for Model 4 defined in (19), modeling (Z;) via its velocity, for
experiment 2.
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Graphique des données
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Fi1a. 1 — Blue grains observed proportions on sampled ears.
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F1G. 2 - Individual dispersal function (in R?) for Model 2, NIG, and a linear type variance, for
experiment 1.
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F1G. 3 — Individual dispersal functions (in R) for Models 2 to 4, following the wind axis (a) and
following the orthogonal direction (b), in the case of the linear type variance, for experiment 1.
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F1G. 4 — Positive standardized residuals for Models 2 to 4 in the case of the binomial type variance
(column (a)) and the linear type variance (colum (b)), for experiment 1.
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F1G. 5 — Individual dispersal functions (in R) for Models 2 to 4, following the wind axis (a) and
following the orthogonal direction (b), in the case of the linear type variance, for experiment 2.
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